Indexed by:
Abstract:
A comprehensive study of Fe alloying influence on as-cast titanium alloys, including microstructure, mechanical properties, bio-corrosion behavior and in-vitro cell response have been carried out to evaluate the biological application potential of Ti-Fe binary alloys. The results indicate that grain sizes of as-cast Ti-Fe alloys are remarkably refined with Fe addition and the mechanical strength is increased tremendously. For instance, Ti-2Fe alloy presents excellent mechanical properties by elevating the tensile strength to 566 MPa, or 1.5 times over pure Ti, while maintaining a relative high plasticity. All Ti-Fe alloys carried in this study show a higher corrosion resistance in Hank's solution than pure Ti due to the grain refine enhancement and higher oxide film growth kinetics. Ti-2Fe alloy presents the best corrosion resistance among them and higher Fe content could bring more Fe2O3 to the oxidation films that decrease the corrosion resistance accordingly. All Ti-Fe alloys are holding a similar osteoblast cell viability and response to pure Ti which ensure their biocompatibility. The combination of mechanical properties, corrosion resistance and in-vitro response of Ti-2Fe promised its application as dental implants in a near future. © 2021 Elsevier B.V.
Keyword:
Reprint Author's Address:
Source :
Materials Science and Engineering C
ISSN: 0928-4931
Year: 2021
Volume: 122
7 . 3 2 8
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:36
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 79
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: