Indexed by:
Abstract:
The use of high strength steel (HSS) cold-formed hollow section is of significant interest in the construction sector due to competitive costs. The accurate simulation of ductile fracture failure at the micro and macro scale is critical for improving the validity of predicting structural behaviour of HSS cold-formed hollow sections and welded joints. In this study, the ductile failure of the cold-formed S700 material is studied using the Gurson-Tvergaard-Needleman (GTN) damage model. Representative volume element (RVE) models with the void volume fraction (VVF) between 0.1% and 30% are employed to investigate the pressure dependency of the deviatoric limit stress. Different load conditions corresponding to different stress triaxiality levels are applied to unit cells with random spherical pores. The inelastic response of the unit cells are analysed, and the parameters q(1), q(2), and q(3) in the GTN yield surface are calibrated. An equation is proposed to determine parameter q(1) for different VVFs. The parameters critical VVF f(c) and final VVF f(f) are calibrated by the coupon test from the literature. Finally, the calibrated GTN model is validated against notched coupon tests. The finite element (FE) results show good agreement with the experimental results, indicating that the identified GTN model could efficiently predict the behaviour of the cold-formed HSS. (C) 2021 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
ISSN: 0143-974X
Year: 2021
Volume: 184
2 . 9 3 8
JCR@2019
ESI Discipline: ENGINEERING;
ESI HC Threshold:30
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: