Indexed by:
Abstract:
Magnetoelectric coupling properties are limited to the substrate clamping effect in traditional ferroelectric/ferromagnetic heterostructures. Here, Fe3O4/BaTiO3 nanopillar composites are successfully constructed. The well-ordered BaTiO3 nanopillar arrays are prepared through template-assisted pulsed laser deposition. The Fe3O4 layer is coated on BaTiO3 nanopillar arrays by atomic layer deposition. The nanopillar arrays and heterostructure are confirmed by scanning electron microscopy and transmission electron microscopy. A large thermally driven magnetoelectric coupling coefficient of 395 Oe degrees C-1 near the phase transition of BaTiO3 (orthorhombic to rhombohedral) is obtained, indicating a strong strain-induced magnetoelectric coupling effect. The enhanced magnetoelectric coupling effect originated from the reduced substrate clamping effect and increased the interface area in nanopillar structures. This work opens a door toward cutting-edge potential applications in spintronic devices.
Keyword:
Reprint Author's Address:
Source :
ACS APPLIED MATERIALS & INTERFACES
ISSN: 1944-8244
Year: 2022
Issue: 11
Volume: 14
Page: 13925-13931
9 . 2 2 9
JCR@2020
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:7
Cited Count:
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: