Indexed by:
Abstract:
A numerical study is performed on the cool-down behavior and thermal stress of a cryogenic tank during the saturated hydrogen gas filling process. CFD simulation is carried out to obtain the flow and temperature distributions inside the tank and the temperature distribution of the tank wall under a specific filling rate. Then the flow and cooling characteristics of the tank during the filling process are analyzed. The thermal stress in the tank wall under three different constraints of the inlet and outlet is calculated with unidirectional fluid-solid coupling method, and the spatial distribution and transient behavior of the thermal stress are revealed. In addition, the rationality of applying elastic supports to the inlet and outlet is demonstrated, and the integrated stress in the tank wall is calculated with the pressure variation in the tank taken into account. Numerical results show that the filling process can be divided into three steps, where the flow and temperature distributions inside the tank are governed by the forced convection from the inlet or the natural convection near the wall in the first and second steps, and by both of them in the third step. The maximum thermal stress appears at the inlet and outlet of the tank under any of the three constraints. For radial elastic support on the inlet and outlet, the maximum thermal stress increases gradually to a steady value and takes up about 15% of the maximum integrated stress in steady state.
Keyword:
Reprint Author's Address:
Source :
Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University
ISSN: 0253-987X
Year: 2014
Issue: 5
Volume: 48
Page: 1-7
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count: -1
30 Days PV: 5
Affiliated Colleges: