Indexed by:
Abstract:
Additive manufacturing (AM), also known as 3D printing technology, is applied to fabricate complex fin structures for heat transfer enhancement at inner surface of tubes, which conventional manufacturing technology cannot make. This work considered rectangular fins, scale fins, and delta fins with staggered alignment at the inner wall of heat transfer tubes for heat transfer enhancement of internal flows. Designed fin structures are trial-printed using plastic material to exam the printability. Laminar flow convective heat transfer has been numerically studied, and heat transfer performance of the tubes with 3D-printed interrupted fins has been compared to that with conventional straight continued fins. The benefit from heat transfer enhancement and the loss due to increased pumping pressure is evaluated using the total entropy generation rate in the control volume of heat transfer tube. As the conclusion of the study, better heat transfer tubes with 3D-printed internal fins are recommended.
Keyword:
Reprint Author's Address:
Email:
Source :
PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2019
Year: 2019
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: