Indexed by:
Abstract:
Introduction: Long bone fracture is common in traumatic osteopathic patients. Good reduction is beneficial for bone healing, preventing the complications such as delayed union, nonunion, malunion, but is hard to achieve. Repeated attempts during the surgery would increase the operation time, cause new damage to the fracture site and excessive exposure to radiation. Robotic and navigation techniques can help improve the reduction accuracy, however, the high cost and complexity of operation have limited their clinical application. Materials and methods: We combined 3D printing with computer-assisted reduction technique to develop a customised external fixator with the function of fracture reduction. The original CT data obtained by scanning the fracture was imported to computer for reconstructing and reducing the 3D image of the fracture, based on which the external fixator (named as Q-Fixator) was designed and then fabricated by 3D printing techniques. The fracture reduction and fixation was achieved by connecting the pins inserted in the bones with the customised Q-Fixator. Experiments were conducted on three fracture models to demonstrate the reduction results. Results: Good reduction results were obtained on all three fractured bone models, with an average rotation of 1.21 degrees(+/- 0.24), angulation of 1.84 degrees(+/- 0.28), and lateral displacement of 2.22 mm(+/- 0.62). Conclusions: A novel customised external fixator for long bone fracture reduction was readily developed using 3D printing technique. The customised external fixator had the advantages of easy manipulation, accurate reduction, minimally invasion and experience-independence. Future application of the customised external fixator can be extended to include the fixation function with stress adjustment and potentially optimise the fracture healing process. (C) 2015 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED
ISSN: 0020-1383
Year: 2015
Issue: 6
Volume: 46
Page: 1150-1155
1 . 9 1
JCR@2015
2 . 5 8 6
JCR@2020
ESI Discipline: CLINICAL MEDICINE;
ESI HC Threshold:178
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count: 52
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0